The Korean Question Answering Dataset
What is KorQuAD 1.0?
KorQuAD 1.0 is a large-scale question-and-answer dataset constructed for Korean machine reading comprehension, and investigate the dataset to understand the distribution of answers and the types of reasoning required to answer the question. This dataset benchmarks the data generating process of SQuAD v1.0 to meet the standard.
Getting Started
KorQuAD 1.0 is a large-scale Korean dataset for machine reading comprehension task consisting of human generated questions for Wikipedia articles. We benchmark the data collecting process of SQuADv1.0 and crowdsourced 70,000+ question-answer pairs. 1,637 articles and 70,079 pairs of question answers were collected. 1,420 articles are used for the training set, 140 for the dev set, and 77 for the test set. 60,407 question-answer pairs are for the training set, 5,774 for the dev set, and 3,898 for the test set.
Download a copy of the dataset (distributed under the CC BY-ND 2.0 KR license):
When submitting a model through Codalab, we consider that you have agreed to calculate the test scores and disclose the scores through the leaderboard. Submitted models, source code, etc. will be licensed by the participant and followed as specified.
To evaluate your models, we have also made available the evaluation script we will use for official evaluation, along with a sample prediction file that the script will take as input. To run the evaluation, use python evaluate-korquad_v1.0.py [path_to_dev-v1.0] [path_to_predictions]
.
Once you have a built a model that works to your expectations on the dev set, you submit it to get official scores. You are limited to one official attempt per week. To preserve the integrity of test results, we do not release the test set to the public. Instead, we require you to submit your model so that we can run it on the test set for you. Here's a tutorial walking you through official evaluation of your model.
Leaderboard
Here are the ExactMatch (EM) and F1 scores evaluated on the test set of KorQuAD 1.0.
Rank | Reg. Date | Model | EM | F1 |
---|---|---|---|---|
- | 2018.10.17 | Human Performance | 80.17 | 91.20 |
1 | 2023.06.27 | EXAONE-LM-v1.0 (single model)
LG AI Research |
89.71 | 96.23 |
2 | 2024.02.02 | MoBERT-Large V2.0 (single model, 355M)
ETRI XAI-NLP Team |
89.05 | 95.92 |
3 | 2022.12.13 | VAIV AI
VAIV Company AI Lab (Kisu Yang) |
88.28 | 95.79 |
4 | 2023.08.25 | MoBERT-Large V1.0 (single model, 355M)
ETRI XAI-NLP Team |
88.56 | 95.66 |
5 | 2020.08.24 | SDS-XFormer+ (single model)
Samsung SDS AI Research |
88.10 | 95.57 |
6 | 2022.03.18 | HAIQV-LM-Large V1.0 (single model)
Hanwha Systems/ICT NLP Part |
87.71 | 95.39 |
7 | 2020.07.13 | LGSP-LM-Large V2.0
LG AI NLP Team |
87.46 | 95.39 |
8 | 2021.11.03 | SkERT-Large 2.0.0 (ensemble)
Skelter Labs |
87.94 | 95.25 |
9 | 2021.12.02 | InfoLab KorLM v0.4 (single model)
KAIST InfoLab |
88.17 | 95.24 |
10 | 2021.12.07 | SkERT-Large 2.0.1 (ensemble)
Skelter Labs |
87.58 | 95.18 |
11 | 2021.09.09 | InfoLab KorLM v0.3
KAIST InfoLab |
87.79 | 95.16 |
12 | 2020.01.08 | SkERT-Large (single model)
Skelter Labs |
87.66 | 95.15 |
13 | 2020.11.09 | Americano (single)
SK Planet RB Dialogue Team(JunSeok Kim) |
86.81 | 95.13 |
14 | 2020.07.13 | BERT (single model)
Anonymous |
86.99 | 95.12 |
15 | 2021.04.08 | Summer is coming 1.1 (single model)
Anonymous |
87.84 | 95.08 |
16 | 2020.09.08 | Tubu the Destroyer 1.2 (single model)
Anonymous |
87.87 | 95.06 |
17 | 2023.03.18 | LDCC-LM (single model)
Lotte Data Communication AI Technical Team (Wonchul Kim) |
87.17 | 95.04 |
18 | 2019.10.25 | KorBERT-Large v1.0
ETRI ExoBrain Team |
87.76 | 95.02 |
19 | 2021.06.02 | SF-Xformer-Large (single model)
Samsung Finance AI Center |
87.07 | 94.82 |
20 | 2021.03.29 | Summer is coming 1.0 (single model)
Anonymous |
86.81 | 94.81 |
21 | 2020.07.08 | BERT (single model)
Anonymous |
86.45 | 94.78 |
22 | 2021.05.20 | InfoLab KorLM v0.2
KAIST InfoLab |
87.48 | 94.77 |
23 | 2020.01.07 | SkERT-LARGE (single model)
Skelter Labs |
87.25 | 94.75 |
24 | 2019.06.26 | LaRva-Kor-Large+ + CLaF (single)
Clova AI LaRva Team |
86.84 | 94.75 |
25 | 2022.05.03 | APplus (single model)
ActionPower |
86.92 | 94.71 |
26 | 2020.01.03 | SkERT Large (single model)
Skelter Labs |
87.28 | 94.66 |
27 | 2021.12.11 | mT5-Large v1.0 (single model)
Everdoubling & AISchool |
87.38 | 94.65 |
28 | 2019.06.04 | BERT-CLKT-MIDDLE (single model)
Anonymous |
86.71 | 94.55 |
29 | 2021.11.23 | TBA
Anonymous |
86.76 | 94.54 |
30 | 2022.10.15 | LDCC-LM (single model)
Lotte Data Communication AI Technical Team |
86.3 | 94.45 |
31 | 2021.04.10 | InfoLab KorLM v0.1
KAIST InfoLab |
83.99 | 94.45 |
32 | 2019.06.03 | LaRva-Kor-Large + CLaF (single)
Clova AI LaRva Team (LPT) |
86.79 | 94.37 |
33 | 2021.11.26 | Aibril multilingual T5 - Large (single)
Aibril NLP AI team |
87.02 | 94.37 |
34 | 2021.10.20 | KonanNet v1.0 (single model)
Konan Technology Inc. |
86.07 | 94.33 |
35 | 2020.01.02 | SkERT-Large (single model)
Skelter Labs |
86.30 | 94.28 |
36 | 2019.03.15 | {BERT-CLKT} (single model)
Anonymous |
86.22 | 94.08 |
37 | 2019.07.17 | KorBERT
Anonymous |
86.12 | 94.02 |
38 | 2019.05.07 | LaRva-Kor+ + CLaF (single)
Clova AI LaRva Team (LPT) |
85.35 | 93.96 |
39 | 2019.04.24 | LaRva-Kor+ (single)
Clova AI LaRva Team (LPT) |
85.25 | 93.94 |
40 | 2020.05.18 | SDS-NET (single model)
Sanghwan Bae & Soonhwan Kwon |
85.81 | 93.92 |
41 | 2020.03.24 | ElBERT-v1.0 + MixTune + Data Augmentation (single)
Enliple AI Lab |
86.17 | 93.84 |
42 | 2020.05.26 | Opt (single model)
Anonymous |
85.68 | 93.77 |
43 | 2021.08.25 | NAMZ-ALBERT V2 (single)
Mediazen NAMZ AI Reseach Team and KISTI National Supercomputing Center |
85.12 | 93.57 |
44 | 2019.07.25 | Bert-Base-Kor-LEN (ensemble)
ChangWook Jun |
85.51 | 93.46 |
45 | 2020.05.27 | Baseline (single model)
Anonymous |
84.97 | 93.38 |
46 | 2021.02.10 | NAMZ-ALBERT (single)
Mediazen NAMZ AI Research Team and KISTI National Supercomputing Center |
84.66 | 93.36 |
47 | 2020.10.23 | Espresso (single)
SK Planet RB Dialogue Team(JunSeok Kim) |
84.35 | 93.35 |
48 | 2021.04.21 | Hansol-base-v1.1 (single model)
Hansol Inticube AI convergence LAB |
84.38 | 93.22 |
49 | 2019.06.29 | BERT-DAL-Masking-Morp (single)
JunSeok Kim |
85.15 | 93.20 |
50 | 2020.07.08 | ALBERT Large(single model)
Anonymous |
84.12 | 93.07 |
51 | 2020.10.12 | Cappuccino (single)
SK Planet RB Dialogue Team(JunSeok Kim) |
83.48 | 93.00 |
52 | 2019.12.12 | HanBert-54k-N (single model)
TwoBlock Ai |
81.94 | 92.93 |
53 | 2019.09.20 | ETRI BERT (single model)
deepfine |
84.56 | 92.91 |
54 | 2019.05.24 | BERT fine-tuned(ensemble)
Oh Yeon Taek |
83.99 | 92.89 |
55 | 2021.01.17 | ActionBasic (single model)
ActionPower |
83.76 | 92.7 |
56 | 2019.12.19 | HanBert-54k-ML (single model)
TwoBlock Ai |
81.89 | 92.65 |
57 | 2019.06.19 | ETRI BERT + Saltlux ADAM API (single model)
Saltlux Inc. AI Labs, AIR team |
84.15 | 92.64 |
58 | 2019.04.10 | BERT-Kor (single)
Clova AI LPT Team |
83.79 | 92.63 |
59 | 2019.03.29 | BERT insp. by GPT-2 + KHAIII (single)
Kakao NLP Team |
84.12 | 92.62 |
60 | 2019.06.19 | BERT-DA-Masking-Morph (single)
JunSeok Kim |
84.20 | 92.59 |
61 | 2019.12.20 | HanBert-90k-N (single model)
TwoBlock Ai |
81.61 | 92.48 |
62 | 2019.12.20 | HanBert-90k-ML (single model)
TwoBlock Ai |
81.35 | 92.41 |
63 | 2019.09.10 | ETRI BERT (single model)
deepfine |
83.48 | 92.39 |
64 | 2019.04.01 | BERT-Multilingual+CLAF+ReTK (single)
KIPI R&D; Center1 |
83.76 | 92.27 |
65 | 2019.01.30 | BERT LM fine-tuned + KHAIII + DHA (single)
Kakao NLP Team |
83.32 | 92.10 |
66 | 2019.12.04 | BERT+VA (single)
JoonOh-Oh |
83.68 | 92.00 |
67 | 2019.01.24 | BERT LM fine-tuned (single) + KHAIII
Kakao NLP Team |
82.14 | 91.85 |
68 | 2019.01.30 | BERT multilingual (ensemble)
mypeacefulcode |
82.53 | 91.67 |
69 | 2021.11.23 | {T5-base} (single model)
RippleAI |
81.68 | 91.65 |
70 | 2021.03.31 | Hansol-Base-single-v1 (single)
Hansol Inticube AI convergence LAB |
82.4 | 91.57 |
71 | 2019.03.28 | BERT KOR (ensemble)
DeepNLP ONE Team |
82.68 | 91.47 |
72 | 2019.06.13 | {BERT-DA-Morph} (single)
JunSeok Kim |
82.48 | 91.47 |
73 | 2019.06.03 | DynamicConv + Self-Attention + N-gram masking (single)
Enliple AI and Chonbuk National University, Cognitive Computing Lab |
80.94 | 91.45 |
74 | 2019.06.03 | BERT_LM_fine-tuned (single)
Anonymous |
82.04 | 91.40 |
75 | 2020.06.20 | BERT+RNN (ensemble model)
🏆 Enliple AI NLP Challenge 🏆 KHY SlideShare GitHub |
82.22 | 91.39 |
76 | 2019.02.14 | BERT fine-tuned (single)
GIST-Dongju Park |
82.27 | 91.24 |
77 | 2019.03.21 | BERT+KEFT (single)
KT BigData BU |
82.27 | 91.23 |
78 | 2019.12.01 | BERT (single)
JoonOh-Oh |
81.68 | 91.12 |
79 | 2019.02.22 | BERT/RPST (single)
Anonymous |
82.25 | 91.11 |
80 | 2019.03.08 | BERT + ES-Nori (single model)
Chang-Uk Jeong @ RNBSOFT AI Chatbot Team |
81.94 | 91.04 |
81 | 2019.10.15 | {BERT-base-unigramLM(Kudo)} (single model)
AIRI@domyounglee |
78.55 | 91.04 |
82 | 2019.06.19 | BERT-Kor-morph (single)
AIRI |
80.09 | 91.01 |
83 | 2019.04.08 | BERT (single)
Bnonymous |
80.58 | 90.75 |
84 | 2020.06.20 | BERT+RNN (single model)
🏆 Enliple AI NLP Challenge 🏆 KHY SlideShare GitHub |
81.40 | 90.74 |
85 | 2019.01.10 | EBB-Net + BERT (single model)
Enliple AI |
80.12 | 90.71 |
86 | 2019.04.10 | Bert single-model
NerdFactory, AI research |
81.63 | 90.68 |
87 | 2020.02.12 | BERT-Multilingual (single model)
Anonymous |
81.09 | 90.61 |
88 | 2019.09.05 | {ETRI BERT} (single model)
deepfine |
80.86 | 90.61 |
89 | 2020.06.25 | BERT-Small + Transfer Learning + Adversarial Training (ensemble)
🏆 Enliple AI NLP Challenge 🏆 TmaxAI SlideShare |
81.73 | 90.55 |
90 | 2019.07.11 | BERT-Fintent V1 + Utagger-UoU (single)
GDchain AI Lab |
79.45 | 90.38 |
91 | 2019.03.13 | BERT-Multilingual (single model)
Initiative |
80.66 | 90.35 |
92 | 2019.05.08 | BERT-Multiling-morph (single)
kwonmha |
79.35 | 90.34 |
93 | 2019.03.05 | BERT-multilingual (single model)
HYU-Minho Ryu |
80.45 | 90.27 |
94 | 2019.09.18 | Mobile-BERT(18M Params & 36.6MB size) (single)
Enliple AI and Chonbuk National University, Cognitive Computing Lab |
81.07 | 90.25 |
95 | 2019.02.21 | Bert_FineTuning (Single model)
Star Ji |
71.75 | 90.12 |
96 | 2019.05.08 | BERT-Multi-Kr (single)
paul.kim |
71.86 | 89.83 |
97 | 2019.03.26 | BERT (single model)
BDOT |
71.78 | 89.82 |
98 | 2020.04.26 | BERTbase (single model)
Anonymous |
71.63 | 89.76 |
99 | 2019.06.17 | BERT-Multilingual
lyeoni, NEOWIZ AI Lab |
71.47 | 89.71 |
100 | 2020.02.17 | {Bert_Multi} (multi model)
EunsongGoh |
66.73 | 89.62 |
101 | 2020.06.25 | BERT-Small + Transfer Learning + Adversarial Training (single model)
🏆 Enliple AI NLP Challenge 🏆 TmaxAI SlideShare |
80.40 | 89.59 |
102 | 2019.04.29 | BERT_Multi (Single)
EunsongGoh |
71.40 | 89.49 |
103 | 2019.01.11 | BERT-Multiling-simple (single)
kwonmha |
70.75 | 89.44 |
104 | 2019.02.19 | BERT multilingual finetune TPU (single)
jskim_kbnow |
71.19 | 89.20 |
105 | 2019.05.21 | Bert-Base-Multilingual (Single)
ybigta KorQuAD |
70.50 | 89.14 |
106 | 2020.06.19 | scBert (single model)
🏆 Enliple AI NLP Challenge 🏆 PNU, delosycho@gmail.com SlideShare GitHub |
79.17 | 88.99 |
107 | 2020.06.19 | scBert (single model)
🏆 Enliple AI NLP Challenge 🏆 PNU SlideShare GitHub |
79.27 | 88.98 |
108 | 2020.06.20 | SDAC (single model)
🏆 Enliple AI NLP Challenge 🏆 [Enliple AI NLP Challenge] Team BS SlideShare |
78.71 | 88.95 |
109 | 2019.06.01 | {BERT-Multilingual fine-tuned+OKT} (single)
JunSeok Kim |
77.12 | 88.92 |
110 | 2020.06.20 | scBert (single model)
🏆 Enliple AI NLP Challenge 🏆 PNU, Sangyeon, delosycho@gmail.com SlideShare GitHub |
78.86 | 88.90 |
111 | 2020.06.19 | SDA (single model)
🏆 Enliple AI NLP Challenge 🏆 [Enliple AI NLP Challenge] Team BS SlideShare |
78.42 | 88.79 |
112 | 2020.06.19 | BerT3Q ensemble T3Q-NLP
🏆 Enliple AI NLP Challenge 🏆 Team t3q.com [Enliple AI NLP Challenge] SlideShare GitHub |
78.99 | 88.65 |
113 | 2019.05.04 | BERT-multilingual (single)
Anonymous |
70.57 | 88.64 |
114 | 2020.06.19 | 5959 (single model)
🏆 Enliple AI NLP Challenge 🏆 GYKIM Slides |
78.63 | 88.58 |
115 | 2019.04.26 | BERT-multilingual (single model)
Tae Hwan Jung@graykode, Kyung Hee Univ |
69.86 | 88.49 |
116 | 2020.06.25 | BERT-small-SeqBoost (single)
🏆 Enliple AI NLP Challenge 🏆 Yonsei Univ. | Korea Univ. GitHub |
78.27 | 88.29 |
117 | 2018.12.28 | BERT-Multilingual (single)
Clova AI LPT Team |
77.04 | 87.85 |
118 | 2020.06.18 | predictions-200619(single model)
🏆 Enliple AI NLP Challenge 🏆 RnDeep velog |
76.94 | 87.50 |
119 | 2020.06.18 | BERT-Dep (single)
🏆 Enliple AI NLP Challenge 🏆 Virssist GitHub |
77.30 | 87.45 |
120 | 2020.06.19 | [AI NLP] bert small
🏆 Enliple AI NLP Challenge 🏆 |
76.68 | 87.43 |
121 | 2020.06.19 | BERT-Dep2 (single)
🏆 Enliple AI NLP Challenge 🏆 Virssist GitHub |
76.99 | 87.33 |
122 | 2020.06.19 | korquad_v1.0_0619
🏆 Enliple AI NLP Challenge 🏆 |
76.81 | 87.33 |
123 | 2020.06.19 | [AI NLP] bert small
🏆 Enliple AI NLP Challenge 🏆 |
76.53 | 87.17 |
124 | 2020.06.19 | BERT-small-SeqBoost (single)
🏆 Enliple AI NLP Challenge 🏆 Yonsei Univ. | Korea Univ. GitHub |
73.27 | 87.11 |
125 | 2019.03.04 | DocQA (single)
CLaF |
75.63 | 85.91 |
126 | 2019.12.20 | DistilBERT-base-multilingual (default huggingface) (single model)
Heeryon Cho |
66.88 | 85.72 |
127 | 2019.03.04 | BiDAF (single)
CLaF |
71.88 | 83.00 |
128 | 2019.12.19 | DistilBERT-base-multilingual (from huggingface) (single model)
Anonymous |
62.90 | 81.29 |
- | 2018.10.17 | Baseline | 71.52 | 82.99 |